ΗΜΕΡΙΔΑ ΑΛΓΕΒΡΑΣ και ΓΕΩΜΕΤΡΙΑΣ, Πέμπτη 29.6.2017

ΗΜΕΡΙΔΑ ΑΛΓΕΒΡΑΣ και ΓΕΩΜΕΤΡΙΑΣ
Αίθουσα Μ2 του Τμήματος Μαθηματικών,
3ος όροφος κτιρίου Σ.Θ.Ε.
Πέμπτη 29 Ιουνίου 2017
 
11:15-12:00  Ευστρατία Καλφαγιάννη, Michigan State University,  
Τίτλος: Geometric structures of 3-manifolds and quantum invariants
Περίληψη: The solution to Thurston’s Geometrization Conjecture by Perelman established that 3-manifolds decompose into pieces that admit geometric structures and that hyperbolic 3-manifolds are abundant. In the last several decades ideas from physics have led to the discovery of powerful invariants of 3-manifold theory, such as the Jones polynomial and its generalizations (quantum invariants). After introducing some background, I will survey open conjectures and recent results on relations between geometric structures of 3-manifolds and quantum invariants of knots and 3-manifolds.
12:00-12:15  Διάλειμμα
12:30-13:15  Γεώργιος Παππάς, Michigan State University,  
Τίτλος: Galois module structure of varieties over the integers
Περίληψη: Let X be a projective algebraic variety defined over the integers which supports an action of a finite group G. If F is a coherent sheaf over X with compatible G-action, the cohomology groups HI(X, F) are G-modules and we would like to determine their structure. We will give an overview of some history and describe various results and conjectures around this problem.
Συνδιοργάνωση:

Τομέας Άλγεβρας, Θεωρίας Αριθμών και Μαθηματικής Λογικής, Τομέας Γεωμετρίας

Τύπος Ανακοίνωσης: 
X