Algebraic Topology

Description

Homotopy and homotopy equivalence, homotopy extension property. Fundamental group: basic constructions, the Seifert-van Kampen theorem, covering spaces. Computations and applications to graphs. Homology: simplicial complexes and CW-complexes. Simplicial and singular homology. Mayer-Vietoris sequence.
[This course fulfills the area requirements for both Algebra and Geometry.]

 

Section: 

Course Coordinators

Suggested References

  1. Α. Hatcher: Algebraic Topology, Cambridge University Press, 2002
  2. J. Rotman: An Introduction to Algebraic Topology, Springer 1988
Semester: 
Credit Units (ECTS): 
10.0
ID: 
Α3, Γ1
Other prerequisites: 
Άλγεβρα και Βασική Τοπολογία
X